skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Samuroff, Simon"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. In cosmological analyses it is common to combine different types of measurement from the same survey. In this paper we use simulated DES Y3 and LSST Y1 data to explore differences in sensitivity to intrinsic alignments (IA) between cosmic shear and galaxy-galaxy lensing. We generate mock shear, galaxy-galaxy lensing and galaxy clustering data, contaminated with a range of IA scenarios. Using a simple 2-parameter IA model (NLA) in a DES Y3 like analysis, we show that the galaxy-galaxy lensing + galaxy clustering combination (2x2pt) is significantly more robust to IA mismodelling than cosmic shear. IA scenarios that produce up to 5sigma biases for shear are seen to be unbiased at the level of 1sigma for 2x2pt. We demonstrate that this robustness can be largely attributed to the redshift separation in galaxy-galaxy lensing, which provides a cleaner separation of lensing and IA contributions. We identify secondary factors which may also contribute, including the possibility of cancellation of higher-order IA terms in 2x2pt and differences in sensitivity to physical scales. Unfortunately this does not typically correspond to equally effective self-calibration in a 3x2pt analysis of the same data, which can show significant biases driven by the cosmic shear part of the data vector. If we increase the precision of our mock analyses to a level roughly equivalent to LSST Y1, we find a similar pattern, with considerably more bias in a cosmic shear analysis than a 2x2pt one, and significant bias in a joint analysis of the two. Our findings suggest that IA model error can manifest itself as internal tension between 1x2 and 2x2 data vectors. We thus propose that such tension (or the lack thereof) can be employed as a test of model sufficiency or insufficiency when choosing a fiducial IA model, alongside other data-driven methods. 
    more » « less
  2. null (Ed.)
    ABSTRACT Measurements of large-scale structure are interpreted using theoretical predictions for the matter distribution, including potential impacts of baryonic physics. We constrain the feedback strength of baryons jointly with cosmology using weak lensing and galaxy clustering observables (3 × 2pt) of Dark Energy Survey (DES) Year 1 data in combination with external information from baryon acoustic oscillations (BAO) and Planck cosmic microwave background polarization. Our baryon modelling is informed by a set of hydrodynamical simulations that span a variety of baryon scenarios; we span this space via a Principal Component (PC) analysis of the summary statistics extracted from these simulations. We show that at the level of DES Y1 constraining power, one PC is sufficient to describe the variation of baryonic effects in the observables, and the first PC amplitude (Q1) generally reflects the strength of baryon feedback. With the upper limit of Q1 prior being bound by the Illustris feedback scenarios, we reach $$\sim 20{{\ \rm per\ cent}}$$ improvement in the constraint of $$S_8=\sigma _8(\Omega _{\rm m}/0.3)^{0.5}=0.788^{+0.018}_{-0.021}$$ compared to the original DES 3 × 2pt analysis. This gain is driven by the inclusion of small-scale cosmic shear information down to 2.5 arcmin, which was excluded in previous DES analyses that did not model baryonic physics. We obtain $$S_8=0.781^{+0.014}_{-0.015}$$ for the combined DES Y1+Planck EE+BAO analysis with a non-informative Q1 prior. In terms of the baryon constraints, we measure $$Q_1=1.14^{+2.20}_{-2.80}$$ for DES Y1 only and $$Q_1=1.42^{+1.63}_{-1.48}$$ for DESY1+Planck EE+BAO, allowing us to exclude one of the most extreme AGN feedback hydrodynamical scenario at more than 2σ. 
    more » « less